On Laplace Transforms Near the Origin

By R. Wong*

Abstract. Let f(t) be locally integrable on $[0, \infty)$ and let $\lfloor \{f\}(s)$ denote the Laplace transform of f(t). In this note, we prove that if $f(t) \sim t^{-\beta} \sum_{n=0}^{\infty} a_n (\log t)^{-n}$ as $t \to \infty$, where $0 \leq \operatorname{Re} \beta < 1$, then $\lfloor \{f\}(s) \sim s^{\beta-1} \sum_{n=0}^{\infty} c_n (\log 1/s)^{-n}$ as $s \to 0$ in $|\arg s| \leq \pi/2 - \Delta$, the c_n being constants.

1. Introduction. Let f(t) be locally integrable on $[0, \infty)$ and let $L\{f\}$ denote the Laplace transform of f(t). That is,

(1.1)
$$L{f} = \int_0^\infty f(t)e^{-st}dt,$$

whenever the integral on the right converges. In a recent paper, Handelsman and Lew [2] have studied the asymptotic behavior of $L\{f\}$ as $s \to 0$, when f(t) satisfies

(1.2)
$$f(t) \sim \exp(-ct^p) \sum_{m,n=0}^{\infty} c_{mn} t^{r_m} (\log t)^n \quad \text{as } t \to \infty,$$

where p > 0, Re $c \ge 0$, Re $r_m \downarrow -\infty$ as $m \to \infty$, and the set $\{n: c_{mn} \ne 0\}$ is finite for each m. In this note, we consider the case

(1.3)
$$f(t) \sim t^{-\beta} \sum_{n=0}^{\infty} a_n (\log t)^{-n} \text{ as } t \to \infty,$$

where $0 \le \text{Re } \beta < 1$. Our result will complement that of Handelsman and Lew.

2. Main Theorem. For convenience, we introduce the notation

(2.1)
$$L_c\{f\} = \int_c^\infty f(t)e^{-st} dt$$

where c is a fixed real number > 1. In [3], it was shown that for any complex number β with Re $\beta < 1$,

(2.2)
$$L_c\{t^{-\beta}(\log t)^{-n}\} \sim s^{\beta-1} \left(\log \frac{1}{s}\right)^{-n} \sum_{r=0}^{\infty} {\binom{-n}{r}} \Gamma^{(r)}(1-\beta) \left(\log \frac{1}{s}\right)^{-r}$$

as $s \to 0$ in $S(\Delta)$, where

Key words and phrases. Laplace transform, asymptotic expansion, Ramanujan function.

Copyright © 1975, American Mathematical Society

Received July 23, 1973.

AMS (MOS) subject classifications (1970). Primary 41A60.

^{*} Research partially supported by the National Research Council of Canada under Contract No. A7359.

R. WONG

(2.3)
$$S(\Delta) = \{s: |\arg s| \le \pi/2 - \Delta\}.$$

Let

(2.4)
$$c_n = \sum_{r=0}^n a_{n-r} \binom{r-n}{r} \Gamma^{(r)} (1-\beta).$$

We are now ready to state and prove our main result.

THEOREM. If f(t) is locally integrable on $[0, \infty)$ and satisfies (1.3), then as $s \to 0$ in $S(\Delta)$

(2.5)
$$L\{f\} \sim s^{\beta-1} \sum_{n=0}^{\infty} c_n \left(\log \frac{1}{s}\right)^{-n},$$

where the coefficients c_n are given in (2.4).

Proof. For any c > 1,

(2.6)
$$L\{f\} = L_c\{f\} + \int_0^c f(t)e^{-st} dt = L_c\{f\} + O(1)$$

as $s \to 0$ in $S(\Delta)$.

Writing

(2.7)
$$f(t) = \sum_{n=0}^{N} a_n t^{-\beta} (\log t)^{-n} + R_N(t)$$

gives

(2.8)
$$L_{c}{f} = \sum_{n=0}^{N} a_{n} L_{c}{t^{-\beta}(\log t)^{-n}} + r_{N},$$

where

(2.9)
$$r_N = \int_c^\infty R_N(t) e^{-st} dt.$$

From (1.3), it follows that there are constants K > 0 and c > 1 such that

(2.10)
$$|R_N(t)| \le K |t^{-\beta} (\log t)^{-N-1}| \text{ for } t \ge c.$$

Hence, by (2.2),

(2.11)
$$|r_N| \leq K \int_c^\infty t^{-\gamma} (\log t)^{-N-1} e^{-\sigma t} dt$$
$$= O(\sigma^{\gamma-1} (\log \sigma)^{-N-1}) \quad \text{as } \sigma \to 0,$$

where $\gamma = \text{Re } \beta$ and $\sigma = \text{Re } s$. Since $|s| \sin \Delta \le \sigma \le |s|$ for any $s \in S(\Delta)$, (2.11) is equivalent to

(2.12)
$$r_N = O(|s|^{\gamma-1} (\log |s|)^{-N-1}) = O(s^{\beta-1} (\log s)^{-N-1})$$

as $s \to 0$ in $S(\Delta)$. Coupling the results (2.8) and (2.12), we obtain

(2.13)
$$L_c\{f\} = \sum_{n=0}^{N} a_n L_c\{t^{-\beta}(\log t)^{-n}\} + O(s^{\beta-1}(\log s)^{-N-1})$$

574

as $s \to 0$ in $S(\Delta)$. Since the O-term in (2.6) may be included in that of (2.12), (2.13) implies

(2.14)
$$L\{f\} = \sum_{n=0}^{N} a_n L_c \{t^{-\beta} (\log t)^{-n}\} + O(s^{\beta-1} (\log s)^{-N-1})$$

as $s \to 0$ in $S(\Delta)$. In view of (2.2), each term in (2.14) can be expanded in powers of $(\log 1/s)^{-1}$. Hence, by regrouping the terms, we have for any $N \ge 0$

(2.15)
$$\mathcal{L}{f} = s^{\beta-1} \left[\sum_{n=0}^{N} c_n \left(\log \frac{1}{s} \right)^{-n} + O((\log s)^{-N-1}) \right]$$

as $s \to 0$ in $S(\Delta)$. This completes the proof of our theorem.

3. An Example. The Ramanujan function is defined by

(3.1)
$$N(s) = \int_0^\infty \frac{e^{-st}}{t\{\pi^2 + (\log t)^2\}} dt.$$

Recently, Bouwkamp [1] obtained the asymptotic expansion

(3.2)
$$N(s) \sim \sum_{n=0}^{\infty} c_n (\log s)^{-n-1} \quad \text{as } s \to \infty,$$

where the coefficients were determined by the generating function

(3.3)
$$\frac{1}{\Gamma(1-x)} = \sum_{n=0}^{\infty} c_n \frac{x^n}{n!}.$$

Our aim is to find the asymptotic behavior of N(s) as $s \to 0$.

Integrating by parts, we obtain from (3.1)

(3.4)
$$N(s) = \frac{1}{2} + \frac{s}{\pi} \int_0^\infty \tan^{-1} \left(\frac{1}{\pi} \log t \right) e^{-st} dt.$$

The function $\tan^{-1}(\log t/\pi)$ has the convergent expansion

(3.5)
$$\tan^{-1}\left(\frac{1}{\pi}\log t\right) = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \left(\frac{\pi}{\log t}\right)^{2n+1},$$

for $t > e^{\pi}$. Hence, the conditions of the theorem are trivially satisfied and we have

1

(3.6)
$$N(s) \sim 1 - \sum_{\nu=0}^{\infty} a_{\nu} \left(\log \frac{1}{s} \right)^{-\nu}$$

as $s \to 0$ in $S(\Delta)$, where

(3.7)
$$a_{\nu} = \sum_{2n+r=\nu} \frac{(-1)^n \pi^{2n}}{2n+1} \begin{pmatrix} -2n-1 \\ r \end{pmatrix} \Gamma^{(r)}(1).$$

It is interesting to note that these coefficients are precisely the ones given by Bouwkamp for the asymptotic expansion of N(s) as $s \to \infty$. To see this, we recall the identity

R. WONG

 $\Gamma(x)\Gamma(1-x) = \pi/\sin \pi x$. Hence, from (3.3),

(3.8)
$$c_{\nu} = \nu! \sum_{2n+r=\nu} \frac{(-1)^n \pi^{2n}}{(2n+1)!} \frac{\Gamma^{(r)}(1)}{r!}.$$

Comparing (3.7) and (3.8), we have

(3.9)
$$a_{\nu} = (-1)^{\nu} c_{\nu}, \quad \nu = 0, 1, 2, \cdots.$$

Department of Mathematics University of Manitoba Winnipeg, Manitoba, Canada

1. C. J. BOUWKAMP, "Note on an asymptotic expansion," Indiana Univ. Math. J., v. 21, 1971, pp. 547-549.

2. RICHARD A. HANDELSMAN & JOHN S. LEW, "Asymptotic expansion of Laplace transforms near the origin," SIAM J. Math. Anal., v. 1, 1970, pp. 118–129. MR 41 #4142.

3. R. WONG, "On a Laplace integral involving logarithms," SIAM J. Math. Anal., v. 1, 1970, pp. 360-364. MR 43 #7842.

576